Optimizing Program Performance Part 2

CMPU 224 – Computer Organization
Jason Waterman
Effect of Basic Optimizations

• 4x to 18x improvement over original unoptimized code

• To seek better performance, we must consider optimizations that exploit the microarchitecture of the processor
 • Code tuned for a specific processor

• We’ll tackle this today

```c
void combine4(vec_ptr v, data_t *dest) {
    long i;
    long length = vec_length(v);
    data_t *data = get_vec_start(v);
    data_t = acc;
    for (i = 0; i < length; i++) {
        acc = acc OP data[i];
    }
    *dest = acc;
}
```

<table>
<thead>
<tr>
<th>Method</th>
<th>Integer</th>
<th>Double FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td>Add</td>
<td>Mult</td>
</tr>
<tr>
<td>Combine1 Unoptimized</td>
<td>22.68</td>
<td>20.02</td>
</tr>
<tr>
<td>Combine3</td>
<td>7.17</td>
<td>9.02</td>
</tr>
<tr>
<td>Combine4</td>
<td>1.27</td>
<td>3.01</td>
</tr>
</tbody>
</table>
Exploiting Instruction-Level Parallelism

• Need general understanding of modern processor design
 • Hardware can execute multiple instructions in parallel

• Performance limited by data dependencies

• Simple transformations can yield dramatic performance improvement
 • Compilers often cannot make these transformations
Superscalar Processor

• **Superscalar processors** can issue and execute *multiple instructions in one cycle*

• Most modern CPUs are superscalar
 • Intel: since Pentium (1993)

• Instructions are retrieved from a sequential instruction stream and are usually scheduled dynamically

• Benefit: without programming effort, superscalar processor can take advantage of a program’s *instruction level parallelism*
Modern CPU Design

Instruction Control

Fetch

Instruction Cache

Retirement Unit

Register File

Fetch Control

Instruction Decode

Address

Instructions

Operations

Registers Updates

Prediction OK?

Execute

Branch Arith Arith Arith Load Store

Functional Units

Operation Results

Data

Addr.

Addr.

Data

Memory

Data Cache

CMPU 224 -- Computer Organization

11/27/2023
Haswell CPU

- 8 Total Functional Units
- Multiple instructions can execute in parallel

Some instructions take > 1 cycle, but can be pipelined

Instruction	**Latency**	**Cycles/Issue**
Load / Store | 4 | 1
Integer Multiply | 3 | 1
Integer/Long Divide | **3-30** | **3-30**
Single/Double FP Multiply | 5 | 1
Single/Double FP Add | 3 | 1
Single/Double FP Divide | **3-15** | **3-15**
Pipelined Functional Units

- Divide computation into stages
- Pass partial computations from stage to stage
- Stage i can start on new computation once values passed to $i+1$
- E.g., complete 3 multiplications in 7 cycles, even though each requires 3 cycles

```c
long mult_eg(long a, long b, long c) {
    long p1 = a*b;
    long p2 = a*c;
    long p3 = p1 * p2;
    return p3;
}
```

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>a*b</td>
<td>a*c</td>
<td></td>
<td></td>
<td>p1*p2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 2</td>
<td>a*b</td>
<td>a*c</td>
<td></td>
<td></td>
<td></td>
<td>p1*p2</td>
<td></td>
</tr>
<tr>
<td>Stage 3</td>
<td>a*b</td>
<td>a*c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p1*p2</td>
</tr>
</tbody>
</table>
x86-64 Compilation of Combine4

- Inner Loop (Case: Integer Multiply)

```
.L519:
    imull (%rax,%rdx,4), %ecx  # t = t * d[i]
    addq $1, %rdx             # i++
    cmpq %rdx, %rbp           # Compare length:i
    jg .L519                  # If >, goto Loop
```

<table>
<thead>
<tr>
<th>Method</th>
<th>Integer</th>
<th>Double FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td>Add</td>
<td>Mult</td>
</tr>
<tr>
<td>Combine4</td>
<td>1.27</td>
<td>3.01</td>
</tr>
<tr>
<td>Latency Bound</td>
<td>1.00</td>
<td>3.00</td>
</tr>
</tbody>
</table>
Loop Unrolling (2x1)

- Perform 2x more useful work per iteration

```c
void unroll2a_combine(vec_ptr v, data_t *dest) {
    long length = vec_length(v);
    long limit = length-1;
    data_t *d = get_vec_start(v);
    data_t x = IDENT;
    long i;
    /* Combine 2 elements at a time */
    for (i = 0; i < limit; i+=2) {
        x = (x OP d[i]) OP d[i+1];
    }
    /* Finish any remaining elements */
    for (; i < length; i++) {
        x = x OP d[i];
    }
    *dest = x;
}
```
Effect of Loop Unrolling

- Helps integer add
 - Achieves latency bound
- Others don’t improve. *Why?*
 - Sequential dependency

<table>
<thead>
<tr>
<th>Method</th>
<th>Integer</th>
<th>Double FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td>Add</td>
<td>Mult</td>
</tr>
<tr>
<td>Combine4</td>
<td>1.27</td>
<td>3.01</td>
</tr>
<tr>
<td>Unroll 2x1</td>
<td>1.01</td>
<td>3.01</td>
</tr>
<tr>
<td>Latency Bound</td>
<td>1.00</td>
<td>3.00</td>
</tr>
</tbody>
</table>

\[x = (x \text{ OP } d[i]) \text{ OP } d[i+1]; \]
Combine4 = Serial Computation (OP = *)

- Computation (length=8)
 \[((((((1 \times d[0]) \times d[1]) \times d[2]) \times d[3]) \times d[4]) \times d[5]) \times d[6]) \times d[7]) \]

- Sequential dependence
 - Performance: determined by latency of OP
Loop Unrolling with Reassociation (2x1a)

- Can this change the result of the computation?
- Yes, for floating point numbers. **Why?**
 - Floating point numbers are not associative in all cases!

```c
void unroll2aa_combine(vec_ptr v, data_t *dest) {
    long length = vec_length(v);
    long limit = length-1;
    data_t *d = get_vec_start(v);
    data_t x = IDENT;
    long i;
    /* Combine 2 elements at a time */
    for (i = 0; i < limit; i+=2) {
        x = x OP (d[i] OP d[i+1]);
    }
    /* Finish any remaining elements */
    for (; i < length; i++) {
        x = x OP d[i];
    }
    *dest = x;
}
```

Compare to before

```
x = (x OP d[i]) OP d[i+1];
```
Effect of Reassociation

- Nearly 2x speedup for Int *, FP +, FP *
 - Reason: Breaks sequential dependency

 \[x = x \text{ OP} (d[i] \text{ OP} d[i+1]); \]

<table>
<thead>
<tr>
<th>Method</th>
<th>Integer</th>
<th>Double FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td>Add</td>
<td>Mult</td>
</tr>
<tr>
<td>Combine4</td>
<td>1.27</td>
<td>3.01</td>
</tr>
<tr>
<td>Unroll 2x1</td>
<td>1.01</td>
<td>3.01</td>
</tr>
<tr>
<td>Unroll 2x1a</td>
<td>1.01</td>
<td>1.51</td>
</tr>
<tr>
<td>Latency Bound</td>
<td>1.00</td>
<td>3.00</td>
</tr>
<tr>
<td>Throughput Bound</td>
<td>0.50</td>
<td>1.00</td>
</tr>
</tbody>
</table>

2 func. units for FP *
2 func. units for load
Loop Unrolling with Separate Accumulators (2x2)

- Different form of reassociation

```c
void unroll2a_combine(vec_ptr v, data_t *dest)
{
    long length = vec_length(v);
    long limit = length - 1;
    data_t *d = get_vec_start(v);
    data_t x0 = IDENT;
    data_t x1 = IDENT;
    long i;

    /* Combine 2 elements at a time */
    for (i = 0; i < limit; i+=2) {
        x0 = x0 OP d[i];
        x1 = x1 OP d[i+1];
    }

    /* Finish any remaining elements */
    for (; i < length; i++) {
        x0 = x0 OP d[i];
    }

    *dest = x0 OP x1;
}
```
Effect of Separate Accumulators

- 2x speedup (over unroll2x1) for Int *, FP +, FP *
- Int + makes use of two load units

```
x0 = x0 OP d[i];
x1 = x1 OP d[i+1];
```
Separate Accumulators

\[
x_0 = x_0 \text{ OP } d[i];
\]

\[
x_1 = x_1 \text{ OP } d[i+1];
\]

- **What changed:**
 - Two independent “streams” of operations

- **Overall Performance**
 - N elements, D cycles latency/op
 - Should be \((N/2+1)*D\) cycles:
 \[\text{CPE} \approx \frac{D}{2}\]
 - CPE matches prediction!

What Now?
Unrolling & Accumulating

• Idea
 • Can unroll to any degree L
 • Can accumulate K results in parallel
 • L must be multiple of K

• Limitations
 • Diminishing returns
 • Cannot go beyond throughput limitations of execution units
 • Large overhead for short lengths
 • Finish off iterations sequentially
Unrolling & Accumulating: Double *

- Case
 - Intel Haswell
 - Double FP Multiplication
 - Latency bound: 5.00. Throughput bound: 0.50 (Issue: 1, Capacity 2)

<table>
<thead>
<tr>
<th>FP *</th>
<th>Unrolling Factor L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>K</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>
Unrolling & Accumulating: Int +

- Case
 - Intel Haswell
 - Integer addition
 - Latency bound: 1.00. Throughput bound: 0.50

<table>
<thead>
<tr>
<th>FP *</th>
<th>Unrolling Factor L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.27</td>
<td>1.01</td>
<td>1.01</td>
<td>1.01</td>
<td>1.01</td>
<td>1.01</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.81</td>
<td>0.69</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>0.69</td>
<td>1.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.56</td>
<td></td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.56</td>
</tr>
</tbody>
</table>
Factors Limiting Performance

• Why where there diminishing returns for loop unrolling and association?
 • Can’t exceed the parallelism of the functional units
 • Register spilling
 • We only have a fixed number of registers that can hold temporary values in memory
 • Extra values will be stored on the stack (in memory)

• Mispredicted branches
 • Pipelined processors must guess which way a branch will go
 • If wrong, must discard the incorrect instructions and start again
 • Converting code to use conditional moves instead of branching can help
 • Good if branching is unpredictable
 • Mostly not a concern as branch prediction is very accurate
Achievable Performance

- Limited only by throughput of functional units
- Up to 42X improvement over original, unoptimized code

<table>
<thead>
<tr>
<th>Method</th>
<th>Integer</th>
<th></th>
<th>Double FP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Add</td>
<td>Mult</td>
<td>Add</td>
<td>Mult</td>
</tr>
<tr>
<td>Operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best</td>
<td>0.54</td>
<td>1.01</td>
<td>1.01</td>
<td>0.52</td>
</tr>
<tr>
<td>Latency Bound</td>
<td>1.00</td>
<td>3.00</td>
<td>3.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Throughput Bound</td>
<td>0.50</td>
<td>1.00</td>
<td>1.00</td>
<td>0.50</td>
</tr>
</tbody>
</table>
Programming with AVX2 (Advanced Vector Extensions)

- YMM Registers: 16 total, each 32 bytes
 - 32 single-byte integers
 - 16 16-bit integers
 - 8 32-bit integers
 - 8 single-precision floats
 - 4 double-precision floats
 - 1 single-precision float
 - 1 double-precision float
SIMD (Single Instruction Multiple Data) Operations

- SIMD Operations: Single Precision
 \[\text{vaddsd} \ %\text{ymm}0, \ %\text{ymm}1, \ %\text{ymm}1 \]

- SIMD Operations: Double Precision
 \[\text{vaddpd} \ %\text{ymm}0, \ %\text{ymm}1, \ %\text{ymm}1 \]
Using Vector Instructions

• Make use of AVX Instructions
 • Parallel operations on multiple data elements
 • See Web Aside OPT:SIMD on CS:APP web page

<table>
<thead>
<tr>
<th>Method</th>
<th>Integer</th>
<th>Double FP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Add</td>
<td>Mult</td>
</tr>
<tr>
<td>Operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scalar Best</td>
<td>0.54</td>
<td>1.01</td>
</tr>
<tr>
<td>Vector Best</td>
<td>0.06</td>
<td>0.24</td>
</tr>
<tr>
<td>Latency Bound</td>
<td>0.50</td>
<td>3.00</td>
</tr>
<tr>
<td>Throughput Bound</td>
<td>0.50</td>
<td>1.00</td>
</tr>
<tr>
<td>Vec Throughput Bound</td>
<td>0.06</td>
<td>0.12</td>
</tr>
</tbody>
</table>
Getting High Performance

• Good compiler and flags
• Don’t do anything silly
 • Watch out for hidden algorithmic inefficiencies
 • Write compiler-friendly code
 • Watch out for optimization blockers: procedure calls & memory references
 • Look carefully at innermost loops (where most work is done)

• Tune code for machine
 • Exploit instruction-level parallelism
 • Make code cache friendly