Integer Arithmetic
Native Data Representations in C

- **char, short, int, and long** are “integer” types
 - Signed by default
 - `int x;`
 - Can declare as unsigned
 - `unsigned int x;`
- **float and double** are “real” types
- A pointer is a data type that holds a memory address

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>pointer</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
Values for Different Word Sizes

\[
\begin{array}{|c|c|c|c|c|}
\hline
 & 8 & 16 & 32 & 64 \\
\hline
U\text{Max} & 255 & 65,535 & 4,294,967,295 & 18,446,744,073,709,551,615 \\
\hline
T\text{Max} & 127 & 32,767 & 2,147,483,647 & 9,223,720,368,547,758,077 \\
\hline
T\text{Min} & -128 & -32,768 & -2,147,483,648 & -9,223,720,368,547,758,088 \\
\hline
\end{array}
\]

- Observations
 - \(|T\text{Min}| = T\text{Max} + 1\)
 - Asymmetric range
 - \(U\text{max} = 2 \times T\text{Max} + 1\)

- C Programming
 - \#include <limits.h>
 - Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
 - Values are platform specific
Mapping Between Signed & Unsigned

• Mappings between unsigned and two’s complement numbers: Keep the same bit representations and reinterpret
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>0111</td>
<td>-7</td>
<td>8</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>9</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>10</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>11</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>12</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>13</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>14</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>15</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- T2U (Signed to Unsigned) and U2T (Unsigned to Signed) mappings are shown.
- The table illustrates how bits are translated between signed and unsigned representations.

Date: 1/31/22

Course: CMPU 224 -- Computer Organization

Page: 5
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>
Relation between Signed & Unsigned

Two’s Complement

Maintain Same Bit Pattern

Unsigned

T2B

B2U

T2U

x

ux

Large negative weight

becomes

Large positive weight

Relation between Signed & Unsigned

Two’s Complement

Maintain Same Bit Pattern

Unsigned

T2B

B2U

T2U

x

ux

Large negative weight

becomes

Large positive weight
Signed vs. Unsigned in C

• Constants
 • Are by default considered to be signed integers
 • Unsigned if have “U” as suffix
 0U, 4294967259U

• Casting
 • Explicit casting between signed & unsigned same as U2T and T2U
 int tx, ty;
 unsigned int ux, uy;
 tx = (int) ux;
 uy = (unsigned) ty;

 • Implicit casting also occurs via assignments and procedure calls
 tx = ux;
 uy = ty;
Sign Extension

• Task:
 • Given \(w \)-bit signed integer \(x \)
 • Convert it to \(w+k \)-bit integer with same value

• Rule:
 • Make \(k \) copies of sign bit:
 • \(X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_0 \)
 • Converting from a smaller to larger integer data type
 • C automatically performs sign extension
Expanding and Truncating Rules

• Expanding (e.g., \texttt{short} to \texttt{int})
 • Unsigned: zeros added
 • Signed: sign extension
 • Both yield expected result

• Truncating (e.g., \texttt{int} to \texttt{short})
 • Unsigned/signed: high order bits are truncated (drop)
 • Result reinterpreted
 • For small numbers this yields expected behavior
 \begin{align*}
 1111010 \rightarrow -6 & \quad 8\text{-bit two’s complement} \\
 1010 \rightarrow -6 & \quad 4\text{-bit two’s complement}
 \end{align*}
 • Overflow can result in a sign change
Unsigned Addition

- Standard Addition Function
 - Ignores carry output
- Implements Modular Arithmetic
 \[s = \text{UAdd}_w(u, v) = u + v \mod 2^w \]
Visualizing Unsigned Addition

- Wraps Around
 - If true sum $\geq 2^w$
 - At most once

![Diagram showing UAdd operation]

Overflow
Two’s Complement Addition

Operands: w bits

True Sum: $w+1$ bits

Discard Carry: w bits

- $\text{TAdd and UAdd have Identical Bit-Level Behavior}$
Visualizing 2’s Complement Addition

• Example Values
 • 4-bit two’s comp
 • Range from -8 to +7

• Wraps Around
 • If sum $\geq 2^{w-1}$: Positive Overflow
 • Adding two positive numbers
 • Answer should be positive
 • Becomes negative
 • If sum $< -2^{w-1}$: Negative Overflow
 • Adding two negative numbers
 • Answer should be negative
 • Becomes positive

\[
TAdd_4(u, v)
\]
Multiplication

• Goal: Computing Product of w-bit numbers x, y
 • Either signed or unsigned

• But exact results can be bigger than w bits
 • Unsigned: up to $2w$ bits
 • Two’s complement min (negative): Up to $2w-1$ bits
 • Two’s complement max (positive): Up to $2w$ bits, but only for $(TMin_w)^2$

• So, maintaining exact results...
 • Would need to keep expanding word size with each product computed
 • Can be done in software, if needed
 • e.g., by “arbitrary precision” arithmetic packages
Unsigned Multiplication in C

Operands: w bits

True Product: $2 \times w$ bits

Discard w bits: w bits

• Standard Multiplication Function
 • Ignores high order w bits

• Implements Modular Arithmetic

\[
UMult_w(u, v) = u \cdot v \mod 2^w
\]
Signed Multiplication in C

• **Standard Multiplication Function**
 • Ignores high order \(w \) bits
 • Some of which are different for signed vs. unsigned multiplication
 • Lower bits are the same

Operands: \(w \) bits

True Product: \(2^w \) bits

Discard \(w \) bits: \(w \) bits

\[
\begin{array}{c}
\text{Operands: } w \text{ bits} \\
\text{True Product: } 2^w \text{ bits} \\
\text{Discard } w \text{ bits: } w \text{ bits}
\end{array}
\]

\[
\begin{array}{c}
\text{TMult}_w(u, v)
\end{array}
\]
Shift Operations

• **Left Shift:** \(x \ll y \)
 - Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

• **Right Shift:** \(x \gg y \)
 - Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0’s on left
 - Arithmetic shift
 - Replicate most significant bit on left

• **Undefined Behavior**
 - Shift amount < 0 or \(\geq \) data size

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>(01100010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ll \ 3)</td>
<td>(00010000)</td>
</tr>
<tr>
<td>Log. (\gg) 2</td>
<td>(00011000)</td>
</tr>
<tr>
<td>Arith. (\gg) 2</td>
<td>(00011000)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>(10100010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ll \ 3)</td>
<td>(00010000)</td>
</tr>
<tr>
<td>Log. (\gg) 2</td>
<td>(00101000)</td>
</tr>
<tr>
<td>Arith. (\gg) 2</td>
<td>(11101000)</td>
</tr>
</tbody>
</table>
Power-of-2 Multiply with Shift

• Operation
 • $u \ll k$ gives $u \times 2^k$
 • Both signed and unsigned

• Examples
 • $u \times 8 = u \ll 3$
 • $u \times 24 = (u \ll 5) - (u \ll 3)$
 • Most machines shift and add faster than multiply
 • Compiler generates this code automatically
Unsigned Power-of-2 Divide with Shift

• Quotient of Unsigned by Power of 2
 • \(u \gg k \) gives \(\lfloor u / 2^k \rfloor \)
 • Uses logical right shift
 • Rounds towards zero (truncates decimal part)

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>x >> 1</td>
<td>7606.5</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>x >> 4</td>
<td>950.8125</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>x >> 8</td>
<td>59.4257813</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
Signed Power-of-2 Divide with Shift

- Quotient of signed by Power of 2
 - \(u \gg k \) gives \(\lfloor u / 2^k \rfloor \) (greatest integer less than)
 - Uses arithmetic right shift
 - Rounds down

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>-12,340.0</td>
<td>11001111 11001100</td>
</tr>
<tr>
<td>(x \gg 1)</td>
<td>-6,170.0</td>
<td>11100111 11100110</td>
</tr>
<tr>
<td>(x \gg 4)</td>
<td>-771.25</td>
<td>11111100 11111100</td>
</tr>
<tr>
<td>(x \gg 8)</td>
<td>-48.203125</td>
<td>11111111 11001111</td>
</tr>
<tr>
<td>(X \gg 14)</td>
<td>-0.75317382</td>
<td>11111111 11111111</td>
</tr>
</tbody>
</table>
Arithmetic: Basic Rules

• Addition:
 • Unsigned/signed: Normal addition followed by truncate
 • same operation on bit level
 • Unsigned: addition mod 2^w
 • Mathematical addition + possible subtraction of 2^w
 • Signed: modified addition mod 2^w (result in proper range)
 • Mathematical addition + possible addition or subtraction of 2^w

• Multiplication:
 • Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
 • Unsigned: multiplication mod 2^w
 • Signed: modified multiplication mod 2^w (result in proper range)

• Shifting:
 • Multiplying/Dividing by powers of 2
 • Logical right shift: shift in 0
 • Arithmetic right shift: shift in the sign bit