Integer Representation

CMPU 224 – Computer Organization
Jason Waterman
Shift Operations in C

- Left Shift: \(x << y \)
 - Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

- Right Shift: \(x >> y \)
 - Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0’s on left
 - Arithmetic shift
 - Replicate most significant bit on left

- Undefined Behavior
 - Shift amount < 0 or ≥ data size
Extracting Bits

• Goal: get the value for some subset of bits from a bit vector

• Can do this with a combination of shifting and masking

• Example: get the middle four bits out of a byte

 • char a = 0x63; // 01100011
 • a = a >> 2; // 00011000
 • a = a & 0xF; // 00001000

• Can extract any contagious group of bits by varying the size of the shift and the masking bits
Logic Operations in C

• No Boolean type in C
 • View 0 as “False”
 • Anything nonzero as “True”
 • Logical operators always return 0 (False) or 1 (True)
 • Early termination

• Logical operators
 • &&, ||, ! (logical AND, OR, NOT)

• Examples (char data type)
 • ![0x41] -> 0x00
 • ![0x00] -> 0x01
 • ![0x41] -> 0x01
 • 0x69 && 0x55 -> 0x01
 • 0x69 || 0x55 -> 0x01
Today

• How integers (signed and unsigned) are represented in modern computer systems
Representing unsigned integers

• Given n bits to store an integer, we can represent 2^n different values

• If we just care about non-negative (aka **unsigned**) integers, we can easily store the values
 $0, 1, 2, ..., 2^n-1$
 • E.g., for 4 bits
 • $0x2 = 2$
 • $0xB = 11$
 • $0xF = 15 = 2^4-1$
 • Binary number
Representing negative integers

• We have seen how to represent **unsigned integers** (i.e., non-negative integers) as **unsigned binary** numbers
 • Every number between 0 and 2^w-1 has a unique encoding as a w-bit value
 • Addition works as we expect it to

• How do we represent negative integers?

• Three common encodings:
 • Sign and magnitude
 • Ones’ complement
 • Two’s complement
Sign and magnitude

- Use one bit to represent sign, remaining bits represent magnitude
- With \(n \) bits, have \(n-1 \) bits for magnitude
 - E.g., with 4 bits, can represent integers
 -7, -6, …, -1, 0, 1, …, 6, 7
- MSB (most significant bit) represents the sign
 - 0 is positive
 - 1 is negative

\[
\begin{align*}
\text{1011} & \quad \text{represents -3} \\
\text{sign: -} & \\
\text{magnitude: 3}
\end{align*}
\]
Properties of sign and magnitude

• Advantages:
 • Straight-forward and intuitive

• Issues:
 • Arithmetic operations need different implementations for signed and unsigned numbers
 • E.g., addition, using 4 bits
 • unsigned: 0001 + 1001 = 1 + 9 = 10 = 1010 ✓
 • sign and magnitude: 0001 + 1001 = 1 + -1 = 0, which is not 1010 ✗
 • Two different representations of zero!
 • E.g., using 4 bits, 1000 and 0000 both represent zero!
Ones’ complement

- Negation is performed by performing a bitwise not (~) on the number
 - In other words, flip all the bits in the number
 - For example, using 4 bit numbers:
 - 6 = 0110
 - -6 = 1001

- Like sign and magnitude, first bit indicates whether number is negative
 - If the msb (most significant bit) is 0, treat it like an unsigned binary number
 - If the msb is 1, the number is negative, flip all the bits to see its magnitude

- Using n bits, can represent numbers 2^n-1 values
 - E.g., using 4 bits, can represent integers
 - -7, -6, ..., -1, 0, 1, ..., 6, 7
Properties of ones’ complement

• We still have two different representations of zero
 • E.g., using 4 bits, 1111 and 0000 both represent zero

• Same implementation of arithmetic operations for signed and unsigned!
 • E.g., addition using 4 bits
 • unsigned: 0001 + 1001 = 1 + 9 = 10 = 1010
 • ones’ complement: 0001 + 1001 = 1 + -6 = -5 = 1010
Two’s complement

- Take the ones’ complement of the number and add one
 - Flip all the bits and add one to the number
- Example: Using 4-bit numbers take the two’s complement of 3

\[(3_{10}) = 0011 \Rightarrow \frac{1100}{1101} = 1101 (3_{10}) \Rightarrow \frac{0010}{0011} = 0011 (3_{10})\]

- Like sign and magnitude and ones’ complement, first bit indicates whether number is negative
Properties of two’s complement

- Same implementation of arithmetic operations for signed and unsigned
 - E.g., addition, using 4 bits
 - unsigned: 0001 + 1001 = 1 + 9 = 10 = 1010
 - two’s complement: 0001 + 1001 = 1 + -7 = -6 = 1010
- Only one representation of zero!
 - Simpler to implement operations
- Not symmetric around zero
 - Can represent one more negative number than positive numbers
 - Using n bits, can represent numbers 2^n values
 - E.g., using 4 bits, can represent integers
 - -8, -7, ..., -1, 0, 1, ..., 6, 7
- Most common representation of negative integers in computers
Converting to and from two’s complement

- To encode a negative number in two’s complement in n bits:
 - Compute out the binary notation for the absolute value using **all n bits**
 - Invert the bits and add 1
 - E.g., to encode -5 using 8 bits
 - 5 = 00000101 using all 8 bits
 - Invert the bits: 11111010
 - Add one: 11111010 + 1 = 11111011
 - -5 encoded in two’s complement using 8 bits is 11111011

- To decode a two’s complement number:
 - If the msb is 0 then number is positive
 - If the msb is 1, then number is negative:
 - invert bits and add 1
 - Value gives you the magnitude of the negative number
Two’s Complement Interpretation

• You can interpret a two’s complement number as having a “negative weighting” in the MSB

<table>
<thead>
<tr>
<th></th>
<th>$-2^3 = -8$</th>
<th>$2^2 = 4$</th>
<th>$2^1 = 2$</th>
<th>$2^0 = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8</td>
<td>+4</td>
<td>+2</td>
<td>+1</td>
<td></td>
</tr>
</tbody>
</table>

-8 + 4 = 4

• For any two’s complement representation
 • The largest negative number will have a 1 in the msb and the rest of the bits 0
 • The largest positive number will have a 0 in the msb and the rest of the bits 1
 • -1 is represented by all ones

\[
\begin{array}{c}
(4_{10}) \quad 0100 \Rightarrow +1011 \quad (-4_{10}) \\
1100 \\
\hline
-8 + 4 \Rightarrow -4
\end{array}
\]
Quick two’s complement conversion

• One trick for taking the to two’s complement of a number quickly
 • Flip all the bits, then starting from the LSB, flip all the ones you see to a zero until you get to a zero, flip that zero to a one and stop

• Example: using 6-bit two’s complement numbers, convert 4 to -4
 • Write out 4 in binary using 6 bits 000100
 • Flip all the bits 111011
 • Flip the rightmost 1’s and the first 0 111100

• For negative two’s complement numbers, leading 1s are similar to leading 0s for positive numbers

 \[
 \begin{array}{c}
 3 - \text{b1+} \\
 000100 \\
 111011 \text{ (flip)} \\
 111100 \text{ (first 0 flip)} \\
 -4 \\
 \\
 4 - \text{b1+} \\
 000100 \\
 111011 \text{ (flip)} \\
 -16 \times 4 + 2 = -4 \\
 -16+8+4 = -4 \\
 \\
 5 - \text{b1+} \\
 111000 \\
 -16 \times 4 + 2 = 1 \\
 -16+8+4 = -4 \\
 \\
 6 - \text{b1+} \\
 111100 \\
 -32 \times 4 + 2 = 1 \\
 -32+16+8+4 = -4 \\
 \end{array}
 \]
Signed vs. unsigned in C

• `int x;` // defines x as a **signed** integer
• `unsigned int x;` // defines x as an unsigned integer

• Constants are signed by default
 • `42` // would be stored as a two’s complement number
 • `42u` // would be stored as an unsigned binary number

• C allows conversion between unsigned and signed
 • Most systems follow the ruled that the underlying bit representation does not change

```c
int main(void) {
    unsigned char ux = 0xff;
    char x = ux;
    printf("%d %d\n", ux, x);
}
```

what will this code print?

```
255 and -1 !!!
```
Expanding the bit representation of a number

- How do you convert from a smaller integer data type to a larger integer data type (e.g., a short to an int) while retaining the same value?
 - Should always be possible because the larger type will have a wider range of numbers than the smaller type
- To convert an unsigned number to a larger data type:
 - Add leading zeros to the representation
 - Known as zero extension
- To convert a two’s complement number to a larger data type:
 - Perform sign extension
 - Add copies of the msb (the sign bit) of the smaller representation to the extra bits of the larger representation

Example:
Extend a 5-bit number to an 8-bit

- Unsigned
 - 10110 ⇒ 00010110
 - 01100 ⇒ 00001100
- Signed
 - 10110 ⇒ 11110110
 - 01100 ⇒ 00001100
Truncating Numbers

• When reducing the number of bits in a number, the smaller number may not be able to correctly represent the larger number
• We reduce the number of bits representing a number, by truncating the uppermost (high-order) bits
 • Reinterpret this truncated number
• For unsigned numbers, it is equivalent to performing a mod \(2^k\) on the original value where \(k\) is the smaller bit width
• A similar property holds for signed numbers except that it then converts the msb into a sign bit
 • Which means it is possible that truncating a signed number changes its sign
• **Rule of thumb**: if the larger number is within the expressible range of the smaller number, the conversion will yield a correct result
What is going on with this cartoon?

They are counting sheep using a 16-bit two’s complement number!