Bits and Bytes

CMPU 224 – Computer Organization
Jason Waterman
What is a bit?

- All data stored in computer systems (hard drives, memory, SD cards, etc.) is stored as bits.
- A bit represents one of two states, “on/off”, “true/false”, “1/0”.
- How that bit is stored depends on the medium:
 - Magnetic (hard drive, floppy disk)
 - Electronic (RAM, Registers)
 - Optical (CD / DVD / Punch Cards)

- Regardless of how it’s stored:
 - A binary digit (or bit) takes on the value of either 0 or 1.
 - A bit is not very much data, so we usually group a bunch of bits together into logical groupings.
Bytes and Words

• A byte is a group of 8 bits:
 • 01100110
 • 01100011
 • 00110010
 • 10101010

• How many unique bytes are there?
 • \(2^8 = 256\), so a byte can represent up to 256 of some thing

• But bytes are still too small to be the basic size of data for a computer

• For the past 20 years or so the basic word size of most computers was 32 bits; today newer machines have a word size of 64 bits

• 0010100101101010011001101101011011010000010011000111110100
 • Looking at a string of 64 bits is somewhat overwhelming and not a great way of transmitting information
Decimal (base 10) Number System

• Decimal is base 10
 • Numbers are represented by the symbols 0-9
 • A decimal number has a one’s place \((10^0)\), a ten’s place \((10^1)\), a hundred’s place \((10^2)\), a thousand’s place \((10^3)\) and so on

\[
2 \times 10^2 + 2 \times 10^1 + 4 \times 10^0 = 224
\]
Binary (base 2) Number System

- Binary is base 2
 - Numbers are represented by the symbols 0 and 1
 - A binary number has a one’s place (2^0), a two’s place (2^1), a four’s place (2^2), an eight’s place (2^3), and so on

$$\begin{array}{cccccc}
2^7 & 2^6 & 2^5 & 2^4 & 2^3 & 2^2 & 2^1 & 2^0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline
128 & 64 & 32 & 16 & 8 & 4 & 2 & 1 \\
\hline
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
\hline
0 + 4 + 0 + 1 = 5
\end{array}$$
Hexadecimal (base 16) Number System

• Hexadecimal (hex) is a base 16 representation
 • We use the letters A-F as the extra “digits” so we count:
 • 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
 10 11 12 13 14 15
 • A hexadecimal number has a one’s place \(16^0\), a sixteen’s place \(16^1\), a two-hundred-fifty-six’s place \(16^2\), and so on
 • \(0x54B54CDB6DC263F4\)

• Each hexadecimal digit represents how many bits?

• How many hexadecimal digits are in a byte?

• How many hexadecimal digits to represent a 64-bit number?
Applying Concepts: Ternary (base 3) numbers

• What is the base 10 (decimal) representation of the following ternary number:
 • 1021_3

\[
\begin{align*}
27 &+ 9 \cdot 3 + 3 \cdot 1 + 3 \cdot 0 \\
&= 27 - 1 + 27 + 3 + 1 \\
&= 54
\end{align*}
\]
Reading Binary

• You should become comfortable reading binary numbers up to 255
 • It’s fun and will soon become second nature
 • All you need to do is add combinations of:
 • 1, 2, 4, 8, 16, 32, 64, and 128
• Just like decimal numbers the least significant digit (or least significant bit LSB) is on the right
 • in the number 123, the rightmost digit (3) is in the one’s place, etc.
 • Example: for the binary number 0101
 • There is a 1 in the 1’s place and a 1 in the 4’s place, so the value is $1 + 4 = 5$
Binary examples

• $1111 = 8 + 4 + 2 + 1 = 15$
• $1000 = 8 + 0 + 0 + 0 = 8$
• $1001 = 8 + 0 + 0 + 1 = 9$
• $11001001 = 128 + 64 + 0 + 0 + 8 + 0 + 0 + 1 = 201$
Practice Problems

• Convert each of these binary values to decimal
 - 11111111 \(2^7 - 1 = 255\)
 \[128 + 64 + 32 + 16\]
 - 11110000 \(= 240\)
 \[128 + 64 + 32 + 16\]
 - 11100000 \(= 240\)
 \[128 + 64 + 32 + 16\]
 - 00001111 \(= 15\)
 \[32 + 16 + 8 + 2 + 1\]
 - 00110011 \(= 57\)
 \[32 + 16 + 8 + 2 + 1\]
 - 01010101 \(= 85\)
 \[64 + 16 + 8 + 1\]
Converting from decimal to binary

- Example: 42_{10}
 - 32 is the largest power of two number ≤ 42 so we know we have a one in the 32's column. Subtract 32 from 42, leaving 10
 - $16 > 10$, so we have a zero in the 16's column
 - $8 \leq 10$, so we have a one in the 8's column. Subtract 8 from 10, leaving 2
 - $4 > 2$, so we have a zero in the 4's column.
 - $2 \geq 2$, so we have a one in the 2’s column. Subtract 2 from 2, leaving 0
 - $1 > 0$, so we have a zero in the 1’s column
 - Putting it all together $42_{10} = 101010_2$
Practice Converting from decimal to binary

• Example: 75
 \[\begin{array}{ccccccc}
 64 & 32 & 16 & 8 & 4 & 2 & 1 \\
 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
 \end{array} \]

• Example: 224
 \[\begin{array}{ccccccc}
 128 & 64 & 32 & 16 & 8 & 4 & 2 \\
 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
 \end{array} \]
Converting to and from Binary and Hex

• Mapping to and from binary and hex is more straightforward than the other conversions we looked at

• Binary to Hex:
 • Group the bits in sets of four
 • Convert each set of 4 bits to a hex digit
 • Example:
 • 1000 1101 0101 0100 0101
 • Group into sets of 4 bits
 • 8D 5 4 5
 • 0x8D545

• Hex to Binary
 • Convert each hex digit into 4 bits
 • 0xDEADBEEF
 • 1101 1110 1010 1101 1011 1110 1110 1111
Practice Problems

- Convert 0xFACE to binary

- Convert \(011101101001110001_2\) to hexadecimal
Decimal / Binary / Hex Cheat Sheet

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>1010</td>
<td>A</td>
</tr>
<tr>
<td>11</td>
<td>1011</td>
<td>B</td>
</tr>
<tr>
<td>12</td>
<td>1100</td>
<td>C</td>
</tr>
<tr>
<td>13</td>
<td>1101</td>
<td>D</td>
</tr>
<tr>
<td>14</td>
<td>1110</td>
<td>E</td>
</tr>
<tr>
<td>15</td>
<td>1111</td>
<td>F</td>
</tr>
</tbody>
</table>
Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode “True” as 1 and “False” as 0

And
- \(A \& B = 1 \) when both \(A = 1 \) and \(B = 1 \)

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(A & B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Or
- \(A \mid B = 1 \) when either \(A = 1 \) or \(B = 1 \)

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(A \mid B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Not
- \(\sim A = 1 \) when \(A = 0 \)

<table>
<thead>
<tr>
<th>(A)</th>
<th>(\sim A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Exclusive-Or (Xor)
- \(A \wedge B = 1 \) when either \(A = 1 \) or \(B = 1 \), but not both

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(A \wedge B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
In General

• Operate on Bit Vectors
 • Operations applied bitwise

\[
\begin{array}{cccc}
\text{AND} & \text{OR} & \text{XOR} & \text{NOT} \\
01101001 & 01101001 & 01101001 & 01101001 \\
\& 01010101 & \mid 01010101 & \^ 01010101 & \sim 01010101 \\
01000001 & 01111101 & 00111100 & 10101010
\end{array}
\]

• All of the properties of Boolean Algebra apply
Bit-Level Operations in C

- Operations &, |, ~, ^ available in C
 - Apply to any “integral” data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise

- Examples (for a char data type)
 - ~0x41 -> 0xBE
 - ~01000001 -> 10111110
 - 0x69 & 0x55 -> 0x41
 - 01101001 & 01010101 -> 01000001
 - 0x69 | 0x55 -> 0x7D
 - 01101001 | 01010101 -> 01111101
Try some Problems

- \(0x35 \rightarrow\)

- \(0xD2 \& 0xF \rightarrow\)

- \(0x6A \mid 0xF0 \rightarrow\)
Try some Problems

• $\sim 0x35 \rightarrow$

• $0xD2 \ & \ 0x0F \rightarrow$

• $0x6A \ | \ 0xF0 \rightarrow$
Helpful Boolean Identities

• Where A is a Boolean value (either 0 or 1)
 • \(A | 0 == A \)
 • \(A & 1 == A \)
 • \(A | A == A \)
 • \(A & A == A \)
 • \(A | \neg A == 1 \)
 • \(1 | A == 1 \)
 • \(A & \neg A == 0 \)
 • \(0 & A == 0 \)
 • \(A ^ A == 0 \)
Helpful Boolean Identities

• Where A and B are Boolean values (either 0 or 1)
 • Commutative Law:
 • $A \lor B == B \lor A$
 • $A \land B == B \land A$
 • Associative Law:
 • $A \lor (B \lor C) == (A \lor B) \lor C$
 • $A \land (B \land C) == (A \land B) \land C$
 • Distributive Law:
 • $A \land (B \lor C) == A \land B \lor A \land C$
 • $A \lor B \land C == (A \lor B) \land (A \lor C)$
 • De Morgan’s Theorem:
 • $\neg (A \land B) == \neg A \lor \neg B$
 • $\neg (A \lor B) == \neg A \land \neg B$
Logic Operations in C

• Contrast to logical operators
 • &&, ||, !
 • View 0 as “False”
 • Anything nonzero as “True”
 • Always returns 0 or 1
 • Early termination

• Examples (char data type)
 • !0x41 -> 0x00
 • !0x00 -> 0x01
 • !!0x41 -> 0x01
 • 0x69 && 0x55 -> 0x01
 • 0x69 || 0x55 -> 0x01
Word-Oriented Memory Organization

- Address Specify Byte locations
 - Address of the first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit) bytes
Byte Ordering

• So, how are the bytes within a multi-byte word ordered in memory

• Conventions
 • Big Endian: Sun, PowerPC Macs, Internet
 • Least significant byte has the highest address
 • Little Endian: x86, ARM processors running Android, iOS, and Windows
 • Least significant byte has the lowest address
Byte Ordering Example

- Example
 - 4-byte value (say an integer) of 0x01234567 is located at memory address 0x100
 - This value exists in memory locations 0x100, 0x101, 0x102, 0x103

<table>
<thead>
<tr>
<th>Big Endian</th>
<th>Little Endian</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x100 0x101 0x102 0x103</td>
<td>0x100 0x101 0x102 0x103</td>
</tr>
<tr>
<td>01 23 45 67</td>
<td>67 45 23 01</td>
</tr>
</tbody>
</table>