Bits and Bytes

CMPU 224 – Computer Organization
Jason Waterman
What is a bit?

• All data stored in computer systems (hard drives, memory, SD cards, etc.) is stored as bits

• A bit represents one of two states, “on/off”, “true/false”, “1/0”

• How that bit is stored depends on the medium
 • Magnetic (hard drive, floppy disk)
 • Electronic (RAM, Registers)
 • Optical (CD / DVD / Punch Cards)

• Regardless of how it’s stored
 • A binary digit (or bit) takes on the value of either 0 or 1

• A bit is not very much data, so we usually group a bunch of bits together into logical groupings
Bytes and Words

• A byte is a group of 8 bits:
 • 01100110
 • 01100011
 • 00110010
 • 10101010
• How many unique bytes are there?
 • $2^8 = 256$, so a byte can represent up to 256 of some thing
• But bytes are still too small to be the basic size of data for a computer
• For the past 20 years or so the basic word size of most computers was 32 bits; today newer machines have a word size of 64 bits
 • 00101010010110101010011001101101101101110000100110001111110100
 • Looking at a string of 64 bits is somewhat overwhelming and not a great way of transmitting information
Decimal (base 10) Number System

• Decimal is base 10
 • Numbers are represented by the symbols 0-9
 • A decimal number has a one’s place (10^0), a ten’s place (10^1), a hundred’s place (10^2), a thousand’s place (10^3) and so on

\[
\begin{align*}
2 & \quad 2 & \quad 4 \\
\hline
10^2 & 10^1 & 10^0
\end{align*}
\]

\[
200 + 20 + 4 = 224
\]
Binary (base 2) Number System

- Binary is base 2
 - Numbers are represented by the symbols 0 and 1
 - A binary number has a one’s place (2^0), a two’s place (2^1), a four’s place (2^2), an eight’s place (2^3), and so on

\[
\begin{array}{cccccc}
2^3 & 2^2 & 2^1 & 2^0 \\
8 & 4 & 2 & 1 \\
\hline
128 & 64 & 32 & 16 & 8 & 4 & 2 & 1 \\
\hline
0 & 1 & 0 & 1 \\
\hline
0 & 1 & 0 & 1 \\
\hline
\end{array}
\]

\[
0 + 1 + 0 + 1 = 5
\]
Hexadecimal (base 16) Number System

- Hexadecimal (hex) is a base 16 representation
 - We use the letters A-F as the extra “digits” so we count:
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
 - 10 11 12 13 14 15
 - A hexadecimal number has a one’s place (16^0), a sixteen’s place (16^1), a two-hundred-fifty-six’s place (16^2), and so on
 - 0x54B54CDB6DC263F4

- Each hexadecimal digit represents how many bits?

- How many hexadecimal digits are in a byte?

- How many hexadecimal digits to represent a 64-bit number?
Applying Concepts: Ternary (base 3) numbers

• What is the base 10 (decimal) representation of the following ternary number:
 • 1021_3

\[
\begin{array}{c}
3^3 & 3^2 & 3^1 & 3^0 \\
27 & 9 & 3 & 1 \\
1 & 0 & 2 & 1
\end{array}
\]

\[
27 \cdot 1 + 9 \cdot 0 + 3 \cdot 2 + 1 \cdot 1 = 34
\]
Reading Binary

• You should become comfortable reading binary numbers up to 255
 • It’s fun and will soon become second nature
 • All you need to do is add combinations of:
 • 1, 2, 4, 8, 16, 32, 64, and 128
• Just like decimal numbers the least significant digit (or least significant bit LSB) is on the right
 • in the number 123, the rightmost digit (3) is in the one’s place, etc.
• Example: for the binary number 0101
 • There is a 1 in the 1’s place and a 1 in the 4’s place, so the value is 1 + 4 = 5
Binary examples

• 1111 = 8 + 4 + 2 + 1 = 15
• 1000 = 8 + 0 + 0 + 0 = 8
• 1001 = 8 + 0 + 0 + 1 = 9
• 11001001 = 128 + 64 + 0 + 0 + 8 + 0 + 0 + 1 = 201
Practice Problems

• Convert each of these binary values to decimal
 • 11111111
 \[2^7 - 1 = 127 \]
 • 11110000
 \[128 + 64 + 32 + 16 = 240 \]
 • 11110000
 \[128 + 64 + 32 + 16 = 240 \]
 • 00001111
 \[8 + 4 + 2 + 1 = 15 \]
 • 00110011
 \[8 + 4 + 2 + 1 = 15 \]
 • 01010101
 \[64 + 16 + 4 + 1 = 85 \]
Converting from decimal to binary

Example: 42_{10}

- 32 is the largest power of two number ≤ 42 so we know we have a one in the 32’s column. Subtract 32 from 42, leaving 10
- 16 > 10, so we have a zero in the 16’s column
- 8 ≤ 10, so we have a one in the 8’s column. Subtract 8 from 10, leaving 2
- 4 > 2, so we have a zero in the 4’s column.
- 2 ≥ 2, so we have a one in the 2’s column. Subtract 2 from 2, leaving 0
- 1 > 0, so we have a zero in the 1’s column
- Putting it all together $42_{10} = 101010_2$
Practice Converting from decimal to binary

• Example: 75

- 64 32 16 8 4 2 1
- 1 0 1 0 1 1

- 75
- 64
- 11
- 8
- 3

• Example: 224

- 224 96
- 128 -64
- 32

- 128 64 32 16 8 4 2 1
- 1 1 1 1 0 0 0 0 0
Converting to and from Binary and Hex

• Mapping to and from binary and hex is more straightforward than the other conversions we looked at

• Binary to Hex:
 • Group the bits in sets of four
 • Convert each set of 4 bits to a hex digit
 • Example:
 • 10001101010101000101
 • 1000 1101 0101 0100 0101
 • 8 D 5 4 5
 • 0x8D545

• Hex to Binary
 • Convert each hex digit into 4 bits
 • 0xDEADBEEF
 • 1101 1110 1010 1101 1011 1110 1110 1111
Practice Problems

• Convert 0xFACE to binary

• Convert 011101101001110001₂ to hexadecimal
<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>1010</td>
<td>A</td>
</tr>
<tr>
<td>11</td>
<td>1011</td>
<td>B</td>
</tr>
<tr>
<td>12</td>
<td>1100</td>
<td>C</td>
</tr>
<tr>
<td>13</td>
<td>1101</td>
<td>D</td>
</tr>
<tr>
<td>14</td>
<td>1110</td>
<td>E</td>
</tr>
<tr>
<td>15</td>
<td>1111</td>
<td>F</td>
</tr>
</tbody>
</table>
Boolean Algebra

• Developed by George Boole in 19th Century
 • Algebraic representation of logic
 • Encode “True” as 1 and “False” as 0

<table>
<thead>
<tr>
<th>&</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

And

<table>
<thead>
<tr>
<th>~A</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Not

<table>
<thead>
<tr>
<th>A</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Or

<table>
<thead>
<tr>
<th>A</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Exclusive-Or (Xor)

<table>
<thead>
<tr>
<th>A</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
In General

• Operate on Bit Vectors
 • Operations applied bitwise

\[
\begin{array}{cccc}
\text{AND} & \text{OR} & \text{XOR} & \text{NOT} \\
01101001 & 01101001 & 01101001 & \\
\& 01010101 & | 01010101 & ^ 01010101 & ~ 01010101 \\
01000001 & 01111101 & 00111100 & 10101010
\end{array}
\]

• All of the properties of Boolean Algebra apply
Bit-Level Operations in C

• Operations &, |, ~, ^ available in C
 • Apply to any “integral” data type
 • long, int, short, char, unsigned
 • View arguments as bit vectors
 • Arguments applied bit-wise

• Examples (for a char data type)
 • \(~0x41\) -> \(0xBE\)
 • \(~01000001\) -> 10111110
 • \(0x69 \& 0x55\) -> \(0x41\)
 • 01101001 \& 01010101 -> 01000001
 • \(0x69 \mid 0x55\) -> \(0x7D\)
 • 01101001 \mid 01010101 -> 01111101
Try some Problems

- $\sim 0x35 \rightarrow$

- $0xD2 \& 0x0F \rightarrow$

- $0x6A \mid 0xF0 \rightarrow$
Try some Problems

• \(~0x35\) ->

• \(0xD2 \& 0x0F\) ->

• \(0x6A \mid 0xF0\) ->
Helpful Boolean Identities

Where A is a Boolean value (either 0 or 1)

- $A | 0 == A$
- $A \& 1 == A$
- $A | A == A$
- $A \& A == A$
- $A | \sim A == 1$
- $1 | A == 1$
- $A \& \sim A == 0$
- $0 \& A == 0$
- $A \sim A == 0$
Helpful Boolean Identities

• Where A and B are Boolean values (either 0 or 1)
 • Commutative Law:
 • A | B == B | A
 • A & B == B & A
 • Associative Law:
 • A | (B | C) == (A | B) | C
 • A & (B & C) == (A & B) & C
 • Distributive Law:
 • A & (B | C) == A & B | A & C
 • A | B & C == (A | B) & (A | C)
 • De Morgan’s Theorem:
 • ~(A & B) == ~A | ~B
 • ~(A | B) == ~A & ~B
Logic Operations in C

- Contrast to logical operators
 - &&, ||,!
 - View 0 as “False”
 - Anything nonzero as “True”
 - Always returns 0 or 1
 - Early termination

- Examples (char data type)
 - !0x41 -> 0x00
 - !0x00 -> 0x01
 - !!0x41 -> 0x01
 - 0x69 && 0x55 -> 0x01
 - 0x69 || 0x55 -> 0x01
Word-Oriented Memory Organization

- Address Specify Byte locations
 - Address of the first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit) bytes

<table>
<thead>
<tr>
<th>32-bit Words</th>
<th>64-bit Words</th>
<th>Bytes</th>
<th>Addr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addr = 0000</td>
<td></td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>Addr = 0004</td>
<td></td>
<td>0001</td>
<td>0001</td>
</tr>
<tr>
<td>Addr = 0008</td>
<td></td>
<td>0002</td>
<td>0002</td>
</tr>
<tr>
<td>Addr = 0012</td>
<td></td>
<td>0003</td>
<td>0003</td>
</tr>
<tr>
<td>Addr = 0016</td>
<td></td>
<td>0004</td>
<td>0004</td>
</tr>
<tr>
<td>Addr = 0020</td>
<td></td>
<td>0005</td>
<td>0005</td>
</tr>
<tr>
<td>Addr = 0024</td>
<td></td>
<td>0006</td>
<td>0006</td>
</tr>
<tr>
<td>Addr = 0028</td>
<td></td>
<td>0007</td>
<td>0007</td>
</tr>
<tr>
<td>Addr = 0032</td>
<td></td>
<td>0008</td>
<td>0008</td>
</tr>
<tr>
<td>Addr = 0036</td>
<td></td>
<td>0009</td>
<td>0009</td>
</tr>
<tr>
<td>Addr = 0040</td>
<td></td>
<td>0010</td>
<td>0010</td>
</tr>
<tr>
<td>Addr = 0044</td>
<td></td>
<td>0011</td>
<td>0011</td>
</tr>
<tr>
<td>Addr = 0048</td>
<td></td>
<td>0012</td>
<td>0012</td>
</tr>
<tr>
<td>Addr = 0052</td>
<td></td>
<td>0013</td>
<td>0013</td>
</tr>
<tr>
<td>Addr = 0056</td>
<td></td>
<td>0014</td>
<td>0014</td>
</tr>
<tr>
<td>Addr = 0060</td>
<td></td>
<td>0015</td>
<td>0015</td>
</tr>
</tbody>
</table>
Byte Ordering

• So, how are the bytes within a multi-byte word ordered in memory

• Conventions
 • Big Endian: Sun, PowerPC Macs, Internet
 • Least significant byte has the highest address
 • Little Endian: x86, ARM processors running Android, iOS, and Windows
 • Least significant byte has the lowest address
Byte Ordering Example

• Example
 • 4-byte value (say an integer) of 0x01234567 is located at memory address 0x100
 • This value exists in memory locations 0x100, 0x101, 0x102, 0x103